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The regulation of DNA accessibility through nucleosome positioning is important for transcription control.
Computational models have been developed to predict genome-wide nucleosome positions from DNA sequences,
but these models consider only nucleosome sequences, which may have limited their power. We developed a statistical
multi-resolution approach to identify a sequence signature, called the N-score, that distinguishes nucleosome binding
DNA from non-nucleosome DNA. This new approach has significantly improved the prediction accuracy. The sequence
information is highly predictive for local nucleosome enrichment or depletion, whereas predictions of the exact
positions are only modestly more accurate than a null model, suggesting the importance of other regulatory factors in
fine-tuning the nucleosome positions. The N-score in promoter regions is negatively correlated with gene expression
levels. Regulatory elements are enriched in low N-score regions. While our model is derived from yeast data, the N-
score pattern computed from this model agrees well with recent high-resolution protein-binding data in human.
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Introduction

In eukaryotic cells, nucleosomes play important roles in
diverse biological processes, including transcription control,
DNA replication and repair [1]. The positions of nucleosomes
must be well-coordinated in order to ensure proper control
of these activities. The coordination of nucleosome positions
is a complex process involving interactions among DNA,
transcription factors, histone modification enzymes, and
chromatin remodeling complexes. How nucleosome positions
are exactly determined by these various factors is still poorly
understood. Recent genome-wide experiments have identi-
fied high resolution nucleosome positions in yeast [2–8],
Caenorhabditis elegans [9], Drosophila [10], and human [11–13].
These data offer unprecedented opportunities to investigate
the regulation of global nucleosome positions.

Of the multitude of factors that regulate nucleosome
positions, the role of DNA sequence specificity is of particular
interest [14,15]. On one hand, the regular spacing of
dinucleotide sequences has the thermodynamic property that
favors local DNA bending required for nucleosome packaging
[16–19]. Also, certain short DNA sequences have been found
to be associated with nucleosome positioning [5,20]. On the
other hand, deletion of some promoter sequences seems to
have little impact on nucleosome positioning [21]. Random
DNA sequences seem to be as competitive for nucleosome
binding as genomic sequences in vitro [22]. Another
important complication is that nucleosome positions are
also altered by many regulatory proteins whose activities do
not appear to be sequence specific [23].

Whereas it is difficult to use genetic methods to directly
test sequence requirement for nucleosome positioning in a
large scale, computational methods that extract sequence
features associated with nucleosome binding may offer
valuable insight. In addition, as high-resolution mapping of
genome-wide nucleosome positions is still experimentally
costly, an accurate in silico prediction of nucleosome

positions also helps downstream functional analyses, such as
improving prediction accuracies of transcription factor
binding sites [24]. Three computational methods have been
developed recently to predict genome-wide nucleosome
positions in Sacchromyces cerevisiae from the genomic sequence
[7,25,26]. The first two methods characterize the pattern of
nucleosome sequences by counting dinucleotide frequencies,
and scan through genomic sequences for matches with this
pattern, whereas the third study searches sequence patterns
by using k-mer enumeration (k from 1 to 6). Using the tiling
array data in [6] as validation, all three groups have found
that their methods have a significantly higher predictive
power than random guessing, which demonstrates that the
nucleosome positioning is not random but partially encoded
in the underlying genomic sequences.
However, the fact that the prediction is only modestly

higher than random guesses suggests that there may be
additional long-range (.100 bp) or sequence independent
signals that are important for nucleosome positioning
undiscovered by current models. In this paper, we report a
novel approach for nucleosome positioning prediction
focusing on long-range sequence information. Our method
first makes use of the wavelet transformation to extract
periodicity features and then uses a statistical model to select
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features associated with nucleosome positioning. We show
that, although still far from being perfect, our model has a
significantly improved performance relative to the Segal [7]
and Ioshikhes [25] studies in discriminating nucleosome and
linker sequences as well as for genome-wide nucleosome
positioning predictions. The Peckham study [26] was pub-
lished while this paper was being reviewed. We show that its
performance is similar to ours.

Using the computational model we developed, we were able
to predict in vivo nucleosome-enriched or -depleted regions,
the negative correlation between promoter nucleosome
occupancy and global transcription rates, and the depletion
of nucleosomes at regulatory elements. We also predicted
that mutation of short DNA sequences only leads to gradual
changes of nucleosome occupancy. Finally, we applied the
model derived from the yeast data to analyze human genomic
sequences and observed a surprisingly good agreement with
the experimental data.

Results

A Robust Model for Discriminating Nucleosomal and
Linker Sequences

Our approach differs from the Segal [7] and Ioshikhes
studies [25] in two main aspects. First, instead of character-
izing each aligned nucleotide positions independently using a
position-specific scoring matrix, we applied a wavelet analysis
to extract spatially periodic signals. Second, instead of
extracting information from nucleosomal DNA sequences
only, we used a logistic regression model to identify signals
that help differentiate nucleosome and linker sequences.

Like our model, the recent Peckham study [26] also used a
discriminative approach. On the other hand, there are
important differences between Peckham’s model and ours.
First, while Peckham et al. searched for over-represented
short sequences (word length ranges from 1 to 6), we targeted
distinct periodic signals. Second, we used different statistical
models to capture sequence features. Compared to support

vector machines, our logistic regression model is easier to
interpret.
We analyzed a dataset containing 199 nucleosome sequen-

ces [7] and 296 long linker sequences [6] previously identified
through high-resolution experiments. The nucleosome and
linker sequences were separately aligned as in [7] (see
Materials and Methods for more details). Each sequence was
converted to 16 numerical signals corresponding to different
position-specific dinucleotide frequencies. The dinucleotide
frequencies over three neighboring base pair positions were
averaged. Each of the 16 numerical signals was then wavelet-
transformed.
Fourier and wavelet analyses have been widely used in

science and engineering for extracting periodic signals [27]. A
major limitation of the traditional Fourier analysis is that it
can only detect global periodicities, i.e., those that persist
throughout the entire sequence. On the other hand, wavelet
analysis is desirable for detecting potentially important
periodicities over multiple scales, which is more suitable for
our task. In wavelet analysis, a signal is decomposed into
orthogonal components, called wavelets, which correspond to
the projection of the signal to different frequency bands. In
our case the orthogonal components are the Haar bases (see
Materials and Methods for details).
The wavelet energies, defined as the total variation at each

length scale, characterize periodic patterns embedded in a
dinucleotide frequency signal. We reasoned that if a
particular frequency is significantly associated with nucleo-
some positioning, it can be detected by comparing the
corresponding wavelet energies for nucleosome vs linker
sequences. With this motivation, we model the probability of
a sequence being nucleosomal as the logit of a linear
combination of wavelet energies (covariates). There are 128
covariates in total. We further used a stepwise logistic
regression method to reduce the number of covariates from
128 to 17, which helped alleviate overfitting. We defined the
N-score as the logit predicted from this model. More details
can be found in Materials and Methods.

Validation of the N-Score Model
By fixing the cutoff value of the N-score, we can classify any

nucleosome-sized sequence as either a nucleosome or a linker
sequence. We compared the performance of different models
by using a 5 3 2-fold cross-validation method recommended
by Dietterich [28]. The dataset described in the previous
section (199 nucleosome and 296 linker sequences) was
randomly partitioned into two subsets of equal sizes, with
the same proportion of positives and negatives in each
training set. Each subset in turn was selected as the training
subset with the other reserved for testing. A receiver
operating characteristic (ROC) curve was obtained for the
testing subset by varying the cutoff N-score values, and the
ROC-score, defined as the area under the ROC curve, was
used to measure the overall model performance. This 2-fold
cross-validation procedure was repeated five times independ-
ently. The average ROC curve of our method is shown in
Figure 1A, which has an ROC-score of 0.84.
For comparisons, we cross-validated related nucleosome

scores derived by other researchers [7,25,26]. For Segal’s
model [7], the nucleosome score corresponds to the apparent
free energy score, which was calculated as described in [7]
using the nucleosome sequences in the training subset only.
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Author Summary

A eukaryotic genome is packaged into chromatin. The chromatin
not only makes it possible to fit the relatively long genome into a
tiny nucleus, but also plays an important regulatory role. The
nucleosome is the fundamental repeating unit of chromatin. High-
resolution tiling array experiments have shown that many nucleo-
somes are well-positioned in vivo, consistent with an important
regulatory role. However, the mechanisms that determine nucleo-
some positioning are still poorly understood. We have developed a
novel computational method for predicting nucleosome positions
using only the genomic sequence information. The method detects
periodic sequence signatures that discriminate nucleosome sequen-
ces from linker sequences. We show that this approach has
significantly improved predictive power compared to previous
studies. Interestingly, the most predictable regions tend to be
located where stringent regulations are needed, i.e., the neighbor-
hood of a transcription start site. This model predicts that
nucleosome occupancy is not strongly controlled by short DNA
sequence motifs but rather progressively controlled by regular
organization of short elements into periodic patterns. We also
provide evidence that sequence specificity for nucleosome binding
is conserved from yeast to human.

Prediction of Local Nucleosome Depletion



Its average ROC-score is 0.67. For Ioshikhes’s model [25], the
nucleosome score corresponds to the NPS score. The original
NPS score was derived from an independent data source [18],
therefore further training was unnecessary. For a fair
comparison, we also applied the method in [18] to the
training data and re-estimated the NPS pattern (denoted as
‘‘Ioshikhes new’’). The average ROC-scores for the two
procedures are 0.64 and 0.68, respectively. The prediction
accuracy of our method was significantly higher than all the
three approaches mentioned above (with p-values of 0.046,
0.016, and 0.04, respectively, based on the 2-sample t-statistics
assuming equal variance; Figure 1A).

To examine whether the performance improvement was
mainly due to discriminative modeling or wavelet analysis, we
modified the method of Segal et al. to incorporate linker
sequence information. More precisely, we center-aligned the
linker sequences in the same way as for nucleosome
sequences, and then derived a position-specific scoring
matrix (PSSM) for the linker sequences in the training set.
The modified free energy score was defined as the log-ratio of
the likelihoods of the nucleosome model and the linker
model. The average ROC-score of the modified Segal method
increased to 0.80 (Figure 1A), which is insignificantly lower
than that of our model. The fact that the modified Segal
model performed better than the original one suggests that
the discriminative approach can improve model performance
without introducing new sequence features. We also tested
Peckham’s support vector machine model [26] and found that
its performance was similar to ours (average ROC-score ¼
0.82; Figure 1A). These two examples suggest that the
performance improvement we observed was likely due to
the discriminative step instead of the specific model
employed. Interestingly, while the features utilized by the
SVM model, modified-Segal model, and our model are quite

different, the performance of these models is remarkably
similar.

The Genome-Wide Prediction of Nucleosome Binding
For the rest of the paper, the N-score model was trained

using the pooled data of the nucleosome and linker
sequences, excluding the 154 linker sequences that were not
in chromosome III. These linker sequences were excluded
from the training set since we would test our model
predictions on other chromosomes. The final selected
variables and weights are reported in Table S1. Using these
parameters, we evaluated the N-score for each contiguous 131
bp DNA segment in the yeast genome and assigned this value
to its center position. In such a way, we obtained a genome-
wide distribution of the N-score, reflecting the predicted
sequence preference of nucleosome binding. Genome-wide
nucleosome occupancy has been measured in yeast at an
average 266 bp resolution [4]. To test whether the above N-
score model was able to predict nucleosome-enriched and
-depleted regions, we compared the N-scores corresponding
to the nucleosome-enriched probes, defined as the 4,000
(about 10%) probes with the highest log-ratio, with the N-
scores corresponding to the nucleosome-depleted probes,
defined as the 4,000 probes with the lowest log-ratio. To
account for the lower resolution, the N-scores over a 300 bp
window centered at each probe position were averaged.
Remarkably, while the N-score model was trained using
information only from the training nucleosome and linker
sequences discussed above, the ROC-score is as high as 0.88
(Figure 1B), implying that nucleosome-enriched and
-depleted probes can be well predicted based on sequence
information alone and that linker sequences are very useful
for the identification of such information. In comparison, the
ROC-scores for Segal’s and Ioshikhes’s original models are

Figure 1. Comparison of the Performance of the Nucleosome Scores from Different Models

‘‘This model’’ refers to the N-score in this paper; ‘‘Segal’’ refers to the apparent free energy score in Segal et al. [7]; and ‘‘Segal new’’ refers to a modified
version of Segal’s model. The modified apparent free energy score is the log-ratio of the likelihoods of the nucleosome model and the linker model;
‘‘Ioshikhes’’ refers to the NPS score in Ioshikhes et al. [25]; ‘‘Ioshikhes new’’ refers to the same as ‘‘Ioshikhes,’’ except that the NPS pattern was
recalculated from the training nucleosome sequences; ‘‘Peckham’’ refers to the support vector machine generated discriminant score using the method
in Peckham et al. [26]
(A) Cross-validation of model performance in discriminating nucleosome from linker sequences. The plotted ROC curves represent the average
performance over five independent rounds of 2-fold cross-validations.
(B) Model performance in discriminating nucleosome-enriched probes from -depleted probes in Pokholok et al [4]. The nucleosome scores for (B) are
averaged over 300 bp windows.
doi:10.1371/journal.pcbi.0040013.g001
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0.61 and 0.51 (the results here and thereafter are based on the
original NPS pattern in [18]; Figure 1B), respectively. All
three discriminative models perform better than the two
non-discriminative models. (ROC-score¼ 0.88 for Peckham’s
model; ROC-score ¼ 0.78 for the modified Segal model;
Figure 1B). The modified Segal model performed slightly
worse than the other two discriminative models (Figure 1A
and 1B). We suspect this may be due to its sensitivity to
sequence alignment errors.

Since measurement errors are inevitable in any experi-
ment, it is desirable to develop a model whose prediction is
robust against experimental inaccuracies. The wavelet model
is a multi-resolution approach for analyzing spatial signals.
When high-resolution nucleosome positioning information is
inaccurate, the coarse resolution information may still
contain significantly predictive power. To evaluate the
impact of experimental inaccuracies on the model predic-
tions, we re-estimated the N-scores by replacing the training
nucleosome sequences by those identified from the tiling
array experiment [6] (i.e., with 10-fold lower resolution). We
observed that the newly estimated N-scores were highly
consistent with those derived earlier from the more accurate
data, with a coefficient of correlation R ¼ 0.79.

N-Score Can Reproduce Known Genomic Features of
Nucleosome Positioning
One of the most striking features of global nucleosome

positioning is that most active promoters contain a nucleo-
some-free region (NFR) near transcription start sites (TSS).
This feature has been identified in a number of organisms
including yeast [4,6], Drosophila [10], and human [11–13]. This
overall NFR pattern has also been predicted based on the
sequence information by aligning the promoters for all yeast
genes at their initial ATG codon and evaluating the average
predicted nucleosome occupancy [7,25]. We repeated the
analysis but averaged the N-score pattern instead. The results
are shown in Figure 2A. Consistent with previous studies, we
found good agreement between the average N-score pattern
with the experimental data on NFR (Figure 2B). Both the N-
score and NFR have a pronounced dip near �200 bp, with a
width of about 150 bp. The N-score is noticeably higher in
coding than in promoter regions. This is also consistent with
the experimentally verified bias of the nucleosome occupancy
[3,4]. Compared with the results from [7,25], the N-score
curve appears to be smoother and less oscillatory (Figure S1A
and S1B).
Genome-wide experimental studies have found that nucle-

osome occupancy is inversely correlated with gene expression
[2–4]. To investigate whether such correlation can be
predicted from DNA sequences, we divided genes into five
different groups according to their transcription rates from
Holstege et al [29]. The average N-scores of genes within each
group are shown in Figure 2C. Except for the most active
group (r . 50 mRNA/h, purple curve), more highly tran-
scribed genes tend to correspond to deeper N-score valleys in
their promoters and more elevated N-score peaks immedi-
ately downstream. In addition, we found that the negative
Pearson correlation between the promoter averaged N-score
and transcription rates is statistically significant (p ¼ 3.5 3

10�4). This pattern is consistent with previous experimental
studies [4]. The pattern is somewhat different for the most
active group, which is enriched for ribosomal genes (113
ribosomal genes out of a total of 170 genes in this group).
Here, the N-score curve shows a double dip pattern spread
over a wider region in the promoters instead of a single deep
valley. This double dip pattern also shows up in the curves
generated by the other models (Figure S1C and S1D).
Whereas the general trends for different models are similar,
the N-score curves appear to be smoother. We also repeated
the analysis using a more recent and accurate source for
genome-wide gene expression [30], and observed a similar
result (Figure S1E), confirming that the double-dip feature is
not an artifact of any particular choice of gene expression
data.
Whereas genomic DNA sequence is invariant, the actual

nucleosome occupancy is dependent on growth conditions. It
is natural to ask whether the genomic sequences in promoter
regions associated with conditional nucleosome occupancy
are designed to facilitate or exclude nucleosome binding. At
normal conditions, the PHO5 promoter is occupied by well-
positioned nucleosomes, one of which is centered at�275 bp
relative to the ATG codon, occluding Pho4 from binding to
its target site at �247 bp [31]. This and three other
nucleosomes were depleted upon phosphate starvation,
making the Pho4 binding site accessible [31]. Interestingly,

Figure 2. The Average Promoter N-Score Pattern

(A) The average N-score pattern over promoters for all verified non–
chromosome III genes. Promoters are aligned by the ATG codon.
(B) The average log-ratio over non–chromosome III promoters probed by
the tiling array [6].
(C) Same as (A), except that promoters are divided into groups according
to the gene transcription rate r (in mRNA/h) as in Holstege et al. [29]
Different curves correspond to different gene groups.
doi:10.1371/journal.pcbi.0040013.g002
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this nucleosome is positioned inside an N-score valley from
about �400 to about �200 bp, suggesting that the genomic
code may be designed to exclude nucleosome binding. To test
whether this is a general property for the organization of
nucleosomes, we examined the distributions of the N-scores
corresponding to the following three groups of probes
selected from Pokholok et al. [4] The first group contains
probes that are nucleosome-enriched under both YPD and
H2O2 growth conditions. The second group contains probes
that are nucleosome-enriched under one condition but
depleted under the other condition. The third group contains
probes that are nucleosome-depleted in both conditions. As
shown in Figure 3, the N-scores of the probes in the first
group are much higher than those in both the second and
third groups, whereas the N-scores corresponding to the
second and third groups are indistinguishable from each
other. This analysis suggests that the PHO5-like nucleosome
positioning regulation may indeed be a general property.

Effects of Sequence Motifs on Nucleosome Positioning
and N-Scores

A few short sequence features have also been known to be
associated with nucleosome positioning. Poly dA:dT tracks
destabilizes nucleosomes in vitro and in vivo [32,33]. Recent
genomic studies have also associated poly dA:dT with
nucleosome-free regions [2,6]. To investigate whether such
an association can also be predicted from N-scores, we
investigated the relationship between the N-score distribu-
tion at poly dA:dT loci (repeat length � 3) in the yeast
genome and the dA:dT run length. Figure 4A shows a clear
negative correlation between the N-score and the length of its

center poly dA:dT track (R ¼ �0.15, p , 1.0 3 10�16),
consistent with experimental results (Figure 4B).
Short elements are unlikely to be dominant factors for

nucleosome positions since they are present only at a tiny
fraction of sites in comparison to abundant occupancy of
nucleosomes and also since histones interact with long
stretches of DNA. By thoroughly investigating the regulation
of nucleosome positioning at the HIS3-PET56 promoter,
Struhl and colleagues examined the deletion of various
sequence elements and found that the DNA accessibility
gradually increased with the size of the sequence deletion
[20]. To test whether this phenomenon can be predicted by
N-scores, we conducted the following computational experi-
ment. For k¼0, 20, . . ., 200, we deleted a k-bp-long contiguous
segment of the promoter sequence (i.e., the intergenic region
between HIS3 and PET56) starting from the �1 position of
HIS3, and calculated the average N-score of the resulting
mutant promoter sequence. Consistent with experimental
results, the change of N-score in the promoter region is
highly correlated with the deletion length k (R ¼ 0.93),
increasing from 0.5 to 3.7 as k increases from 0 to 200 bp.
Interestingly, Sekinger observed that the nucleosome posi-
tions in the HIS3 coding region becomes delocalized as
promoter sequences are deleted [20]. This is probably due to

Figure 3. Correlation Between N-Score and H2O2-Induced Nucleosome

Occupancy

The box-plot is drawn using the default setting in MATLAB. Coding for
the probe groups: E-E, enriched in both YPD and H2O2 growth
conditions; E-D, enriched in one but depleted in the other growth
condition; D-D, depleted in both growth conditions [4].
doi:10.1371/journal.pcbi.0040013.g003

Figure 4. Correlation Between Poly dA:dT Run Length and N-Score, and

the BLAST-Entropy Normalized Log-Ratio in Yuan et al. [6]

(A) N-score.
(B) BLAST-entropy normalized log-ratio in Yuan et al. [6]
doi:10.1371/journal.pcbi.0040013.g004
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thermodynamic competition between neighboring DNA
sequences.

To test the generality of this property, we carried out a
similar analysis on 100 randomly selected promoter sequen-
ces. Each sequence was progressively deleted in steps up to
200 bp. At each step, a 10 bp DNA element was randomly
chosen and deleted from the remaining promoter sequence.
We compared the average N-score over the truncated
promoter sequences with the original ones. Although a
deletion may either increase or decrease the average N-score,
the change is significantly positively correlated with the
length of deletion (R¼ 0.48, p¼ 2.1 3 10�119), suggesting that
the progressive effect of short DNA elements on nucleosome
occupancy is a global property.

Our systematic approach to analyzing spatially coherent
patterns also yields predictions of new sequence features.
Table S2 lists all the wavelet components used by our logistic
regression model ranked by the significance (p-values) of their
regression coefficient. Because of our use of a stepwise
variable selection procedure, usually only one of two or more
highly correlated dinucleotide patterns is included in the
final regression model. Therefore, Table S2 is more useful for
evaluating the importance of individual factors. Interestingly,
we found that the most important predictions appear to be
frequencies at the single base pair scale, with TT/AA/TA
ranking at the top. AT/AC/GT are also among the most
significant predictors, whereas GC seems to only have
moderate predicting power. It has been known for a long
time that nucleosome binding is thermodynamically favored
if the dinucleotides AA/TT exhibit a ;10.2 bp periodicity. In
a wavelet representation, the length scales are discretized and
a 10.2 bp periodicity approximately corresponds to 8 bp
(level 4) or 16 bp (level 3). As expected, at this frequency band
AA/TT are the most significant predictors. Somewhat
surprisingly, most of the top ranked sequence features appear
to be related to nucleosome exclusion rather than formation,
suggesting that the primary role for sequence information
may be to establish the boundaries for nucleosome binding.

Regulatory Elements Are Enriched in Low N-Score Regions
Previous experimental studies have shown that functional

transcription factor binding sites are typically nucleosome
depleted [2,3], whereas the nucleosome occupancy at un-
bound motif sites is indistinguishable from the genomic
background [6]. To test whether these characteristic differ-
ences can be predicted from sequence information alone, we
compared the N-score distributions at transcription factor
binding sites [34], unbound motif sites [34], and the genomic
background. The average N-score is �1.03 at transcription
factor binding sites, which is significantly lower than the
average over the intergenic regions (�0.77, p¼ 0 from t-test),
whereas the average N-score at unbound motif sites is�0.70,
similar to genomic background. Therefore, the in vivo
nucleosome occupancy differences between bound and un-
bound motif sites can be partially explained by sequence
differences at a longer scale. Similar results have been found
in previous studies [7,25] and a comparison is shown in Figure
S2. Curiously, for Segal’s model, the predicted nucleosome
occupancy is higher at both functional and non-functional
motifs sites than at the intergenic background.

The TATA box is a universal regulatory element. The
promoters of about 20% genes in the yeast genome contain a

TATA box [35]. The tiling array data show reduced
nucleosome occupancy at the TATA boxes. It is unclear
whether this bias is caused by a sequence dependent
mechanism, since it was predicted by Segal’s model but not
by Ioshikhes’s model. For our model, we found that average
N-score at the TATA boxes is �0.97, whereas the intergenic
background is �0.77, and the difference is highly statistically
significant (p , 10�100 from t-test), consistent with the
predictions made by Segal et al. The average N-score patterns
for the TATA and TATA-less genes are quite similar, though.

A Hidden Markov Model for Prediction of Genome-Wide
Nucleosome Positions
We have shown that the N-score is a useful tool for

quantifying the sequence preference of nucleosome binding,
but this information needs to be further processed in order
the predict nucleosome positions genome-wide. The infor-
mation summarized by the N-score is similar to that revealed
by a chromatin immuno-precipitation (CHIP-chip) experi-
ment, in which the enrichment data need to be processed by
computational methods in order to identify protein binding
sites [36,37]. In Yuan et al. [6], we have developed a hidden
Markov model (HMM) to identify nucleosome positions from
tiling array data. Here we used a simplified version of the
model. Our HMM structure takes into account the fact that
the positions of neighboring nucleosome interfere with each
other via steric hindrance. Each hidden state indicates
whether or not a position is bound by the nucleosome and
follows a Markov chain. The observed variable emitted from
the hidden state is the N-score of that nucleotide position.
Intuitively, the HMM helps us locate non-overlapping local
peaks of the N-scores genome-wide and these peaks represent
the predicted nucleosome positions (see Materials and
Methods for more details).
In previous studies [7,25,26], the authors quantify their

prediction accuracy as the fraction of experimentally verified
nucleosomes in a particular genomic region that are correctly
predicted by their models, which is equivalent to one minus
the false negative error rate. They observed that their model
predictions are significantly better than random guessing (i.e.,
randomly sampling the same number of positions as their
model did). We obtained the chromosomal coordinates of the
top 70,000 predicted nucleosome positions (of which 1,822
are on chromosome III) from Dr. Segal. The performance of
each of the models was evaluated by validating against the
non–chromosome III nucleosome positions in [6] because
long linkers from chromosome III were used for training the
N-score model. With a 35 bp prediction accuracy cutoff (i.e., a
correctly predicted site has to be within 35 bp of a true site),
the predicted nucleosome positions of Segal’s method has a
false negative rate of 0.56, compared to 0.66 by random
guessing (Figure 5A). Our model has a lower false negative
rate of 0.52 despite that it predicted fewer nucleosomes
(47,113 in total). For this smaller number of predictions, the
false negative rate of random guessing is at 0.75. For a fair
comparison, we ranked Segal’s predicted nucleosome posi-
tions by their predicted probabilities and selected the 47,113
top ranked predictions. The false negative rate of their
method was increased to 0.69 due to this reduction of the
total number of predictions.
Since the false negative rate is highly dependent on the

total number of predicted nucleosome positions, this
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measure may distort the predictive power of a method. In the
extreme case, the trivial prediction that declares every
genomic position as a nucleosome position results in a zero
false negative rate, but a very high false positive rate.
Alternatively, we could measure model performance by its
false positive error rate, i.e., the fraction of predicted
nucleosome positions that are incorrect, which is insensitive
to the number of predicted nucleosomes. At the threshold of
35 bp accuracy, our method have a false positive rate of 0.54,
significantly lower than 0.71, the false positive rate of random
guessing (Figure 5B). In comparison, the false positive rate
corresponding to all predicted nucleosomes from Segal’s
model is 0.68 compared to 0.71 of the random guessing. For
the top ranked predictions from Segal’s model, the false
positive error is again 0.69. Note that the false positive rate is
not sensitive to the number of predictions. For example, the
false positive error rate for the trivial prediction is 0.72,
which is almost identical to random guessing.

In order to compare with Ioshikhes’s model, we down-
loaded the predicted nucleosome positions from Dr. Pugh’s
website (http://atlas.bx.psu.edu). Since the model was used to
predict nucleosome positions in selected promoter regions
only, our validation was further confined to the regions not
only probed by the tiling arrays but also by all computational
studies. The performances between the Segal and Ioshikhes
models for this dataset were similar, with false positive rates
at 0.66 and 0.66, respectively, whereas our model had a false
positive error rate of 0.51 (Figure 6A).

Peckham et al. predicted nucleosome positions corre-
sponding to 188 contig regions interrogated by Yuan et al.’s
tiling array [6]. This was done by applying the HMM in [6] to
the nucleosome scores calculated by their support vector
machine model. The false positive error rates corresponding
to all the predicted positions are shown in Figure S4. At the
threshold of 35 bp accuracy, their false positive error rate is
0.57, which is better than the non-discriminative models but
slightly worse than ours.

We examined the genome-wide H2A.Z positions obtained

recently by Albert et al. [8], who identified ;40,000
nucleosome positions at a ;4 bp resolution by pyrosequenc-
ing nucleosome DNA. These authors tested the computa-
tional models in [7,25] and found that both performed
poorly. We applied our method and found that it had
negligible improvement over previous methods and still
performed poorly (Figure 6B). In addition, we retrained the
N-score model using H2A.Z nucleosome sequence informa-
tion from Albert et al., yet it does not lead to a higher
prediction accuracy (Figure S3). Albert et al. found that the
average dinucleotide frequency patterns over all their
mapped H2A.Z nucleosome sequences are quite different
from the usual periodic pattern, whereas only when they
selected a small subset of most highly stable H2A.Z
nuclesomes (;8,000 in total) did the periodic pattern re-
emerge. It is unclear what other aspects of this dataset may
have caused all the methods to fail.
We also validated our prediction results against the

literature nucleosome positions included by Segal et al. [7].
For this dataset, our model performed insignificantly poorer
(Figure 6C). Considering that this literature set contains only
99 nucleosome positions, and, as noted in [7], there is a
significant variation in data quality and growth conditions
among different studies. The performance differences might
be simply due to random fluctuations. However, it may also
be true that each model better predicts some but not all
regions, and that a combination of different models may lead
to a better overall result.
We next tested on the problem of predicting NFR

locations. Here again, we used non–chromosome III data
from Yuan et al. [6] for validation. Figure 6D shows that our
method more accurately predicted the NFR locations than
the other two methods and was significantly better than
random guessing. In this exercise, the NFRs were defined as
linkers that are 100 bp or longer, and the prediction accuracy
was defined as the center-to-center distance between pre-
dicted and experimentally identified NFRs. This metric is
insensitive to the length variation of either true or predicted

Figure 5. Comparison of the Accuracies of the Predicted Non–Chromosome III Nucleosome Positions Obtained from Segal’s [7] and Our Model

(A) False negative error rates; (B) false positive error rates. ‘‘Random’’ refers to a random permutation of prediction nucleosomes. ‘‘Trivial’’ means every
base pair coordinate is predicted as a nucleosome position. ‘‘70k’’ or ‘‘47k’’ refers to the number of predicted nucleosome positions involved in the
comparison. For Segal’s model, the top-ranked nucleosomes were selected. Our model predicts a total of 47,000 non–chromosome III nucleosome
positions.
doi:10.1371/journal.pcbi.0040013.g005
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NFRs. The high error rate of NFR predictions can be partially
attributed to the variability of the width of an NFR. Although
the false positive rate for NFR predictions is higher than that
for nucleosome position predictions, the relative improve-
ment over random guessing is comparable.

While predictions of genome-wide nucleosome positions are
only modestly better than random, it is unclear whether the
predictability is uniformly distributed or there exist specific
loci that may be associated with exceptionally high predict-
ability. We tested whether the prediction accuracy is dependent
upon the distance between predicted nucleosomes and the 59-
end of non–chromosome III genes. We found that the 59-region
is more predictable (false positive error rate at 0.48) than other
regions (false positive error rate of 0.52). We repeated the
analysis by using the other models and found similar results.
For Segal’s model, the 59 region has a false positive error rate at
0.63, compared to 0.71 in other regions; for Ioshikhes’s model,
the error rates are 0.60 and 0.74, respectively.

N-Score Analysis for the Human Genome
Since the nucleosome is conserved across all eukaryotes, an

intriguing question is whether the sequence preference for
nucleosome binding is also conserved. Previous studies have
found that the nucleosome sequence patterns in chicken and
yeast are similar [7]; however, it is unclear whether the
information in non-nucleosome DNA, which is critical for the
prediction of local nucleosome depletion as demonstrated
above, is also conserved. Recently, high-resolution genome-
wide binding sites of several important histone related
proteins in human have been experimentally identified

[13,38]. To test whether our model predictions agree with
these data, we calculated the average N-score at the human
promoter regions aligned by known transcription start sites
(TSS) obtained from DBTSS [39], where the model parameters
for the N-score computation are kept as those estimated from
the yeast data (Figure 7A). The ;100 bp wide dip at TSS and
the two peaks located at approximately�100 bp andþ200 bp
agree well with the locations of the experimentally identified
NFRs and adjacent nucleosomes (Figure 2B and 2L in Barski et
al. [13]), strongly suggesting the conservation of sequence
specificity of nucleosome binding DNA across eukaryotes.
CTCF is a protein that binds to insulators in vertebrates.

Recently, CTCF has drawn considerable interest and its
genome-wide binding sites in human have been experimentally
identified [13,38]. CTCF is also known to be associated with a
number of active epigenetic marks, including H3K4me1–3 and
H2A.Z [13]. To test whether these distinct epigenetic profiles
are related to the sequence-dependent nucleosome occupancy,
we computed the average N-score profile for the DNA
sequences aligned by the center positions of the reported
CTCF binding sites [13,38]. We observed a ;500-bp-wide N-
score peak centered at the CTCF binding sites (Figure 7B),
suggesting that CTCF and nucleosome binding share similar
sequence specificity. This is consistent with the observation that
the H2A.Z also peaks at the CTCF binding sites [13]. Kim et al.
[38] have discovered a 20-bp-long sequencemotif. Interestingly,
while the majority of CTCF binding sites share this motif, there
are also a large number of binding sites that do not. Our result
suggests that longer DNA sequence informationmay play a role
in the regulation of CTCF binding.

Figure 6. Comparison of the False Positive Error Rates of Predicted Nucleosome Positions Obtained from Different Models

(A) Validation with the tiling array data [6].
(B) Validation with the sequencing data [8].
(C) Validation with literature positions as in [7]. Again, a trivial model means every base pair coordinate is predicted as a nucleosome position.
(D) Validation of predicted NFR positions with the tiling array data [6]. NFRs are defined as linkers that are longer than 100 bp. Prediction errors are
measured by center-to-center distances.
doi:10.1371/journal.pcbi.0040013.g006
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Discussion

We have developed a novel computational approach for
nucleosome positioning prediction and shown that this
approach outperforms previous models [7,25] in terms of
the ability to recognize known nucleosome and linker DNA
sequences as well as to predict genome-wide nucleosome
positions. Our method, which uses only sequence informa-
tion, predicts many properties of in vivo nucleosome
positioning, suggesting that sequence information is critical
for the overall organization of nucleosomes in living cells.

We have found that our model performs similar to two
alternative discriminative models: the support vector ma-
chine model recently developed by Peckham et al. [26] and a
modified Segal model developed by us. Therefore, the
prediction improvement is primarily due to a systematic
use of the linker sequence information. The advantage of a
discriminative model over a generative model is that it selects
features that are specific to either nucleosome or linker
sequences, whereas features common to both types of
sequences, such as the frequency of the dinucleotide CC,
are filtered out. Interestingly, while the other two methods do
not explicitly take periodicity into account, the importance
of periodicity is reflected in their results (see Figure 1B in [7]
and Figure 6 in [26]).

It is interesting to note that predictions of genome-wide
nucleosome positions are only modestly better than random
guesses, consistent with the conclusion in Peckham et al. [26]
Although it is imaginable that further improvement of the
computational models may uncover new sequence informa-
tion that substantially increases the prediction accuracy,
another possibility is that exact nucleosome positions may be
further fine-tuned through interactions with chromatin

modifying complexes and transcription factors, which are
environment and stage dependent, and cannot be accurately
be predicted from sequence information alone.
While our model was inferred from yeast data, the resulting

N-score formula can be used to predict nucleosome
occupancy in other species. It is somewhat surprising to us
that the yeast-derived N-score patterns of the human genome
agree so well with the newly available human nucleosome
occupancy data, suggesting that the sequence specificity of
nucleosome binding is conserved across eukaryotes.
Typical computational approaches for identifying protein-

DNA binding sites assume that the binding only involves
short regulatory elements (see Ji and Wong [40] for a review).
Whereas these computational methods have successfully
predicted transcription factor binding sites from bacteria to
mammalian systems, false positive rates of these computa-
tional predictions are still very high. Whereas long-regulatory
elements have been investigated by combinations of specific
DNA binding sites [41–44], the wavelet method proposed here
directly detects long regulatory sequences. Our observations
here suggest that some overall features of the neighboring
DNA sequences of a binding site may be the key to improve
protein-DNA binding site predictions.
Our current model ignores several factors that may affect

nucleosome positioning predictions. As with previous meth-
ods, our model only considers dinucleotide frequencies,
whereas longer oligonucleotide sequences may also be
important for nucleosome positioning In addition, only the
amplitude information of a periodic signal is retained in the
N-score calculation, whereas it may also be useful to retain
the ‘‘phase’’ information. It will be a worthwhile future work
to study how to quantify information in long oligonucleotide

Figure 7. Application of the N-Score Model Derived from the Yeast Data to the Human Genome

(A) The average N-score pattern for all human promoters aligned by TSS [39].
(B) The average N-score pattern aligned by CTCF binding sites [13,38].
doi:10.1371/journal.pcbi.0040013.g007
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sequences and how to properly incorporate more sequence
and phase factors for predicting nucleosome positioning.

Materials and Methods

Derivation of the N-score. High resolution nucleosome and linker
sequences have been previously identified experimentally. First, 199
high-resolution nucleosomal DNA sequences have been experimen-
tally identified through sequencing by Segal et al. [7]. The length of
these sequences varies from 142 to 153 bp. These nucleosome
sequences were aligned as in Segal et al. [7], with both forward and
reverse strands included. Second, using a tiling microarray-based
protocol, we identified 296 NFRs in the promoter sequences [6]. Each
NFR contains a stretch of linker DNA whose length is over 100 bp.
These linker sequences were aligned in the same way as the
nucleosome sequences. For each nucleosome or linker sequence,
the central 131 bp were retained for further analysis. Linker
sequences shorter than 131 bp were symmetrically extended in both
directions. The reverse strand of every sequence is also added to the
dataset. For each of the 16 dinucleotides, say D, each sequence S¼ (s1,
. . ., s131) was first converted to a 130-dimensional numerical vector
with its jth entry recording whether or not the dinucleotide in (sj, sjþ1)
is the same as D. Then, every three consecutive positions are averaged
to result in a vector of length 128. Thus, each sequence will result in
16 vectors of 128 dimensions.

Let fS,D (i/128), i¼1,. . .,128 be the dinucleotide frequency signal for
sequence S and dinucleotide D. Each of these functions is decom-
posed into a linear combination of wavelet components as

fS;Dði=128Þ ¼
X
j;k

c jkðS;DÞw
j
kði=128Þ þ c0ðS;DÞ

where the wavelet functions w j
kðxÞ ¼ 2 j=2wð2 jx� kÞ; k¼0,. . ., 2j� 1, j¼

0,. . ., 7. Here we used the Haar wavelets; that is,

wðxÞ ¼
1; for 0 � x, 1=2
�1; for 1=2 � x � 1
0; otherwise

:

8<
:

The wavelet coefficients c jk ðS;DÞ are the projection of the
signal fS;D onto w j

k ðxÞ and can be calculated by c jk ðS;DÞ ¼X
i

fS;Dði=128Þw j
k ði=128Þ. Coefficient c0ðS;DÞ ¼

X
i

fS;Dði=128Þ is sim-

ply the sum of the dinucleotide frequencies over all positions. The

wavelet energy EjðS;DÞ ¼
X
k

ðc jk ðS;DÞÞ
2 at level j measures the total

variance of the signal at the 27�j bp length scale. Since there are eight
wavelet levels, each dinucleotide gives rise to eight energies for each
sequence.

Let xl (S), l ¼ 1,. . .,128 be the collection of wavelet energies at all
levels for all dinucleotides. We model the probability p(S) for S being
a nucleosome sequence as

log
pðSÞ

1� pðSÞ

� �
¼ b0 þ

X
l

blxlðSÞ

Since the number of predictors is quite large, we used a stepwise
procedure to select predictors and estimate the corresponding
coefficients using a program in SAS (http://v8doc.sas.com/sashtml)
under their default settings.

Prediction of genome-wide nucleosome positions via a hidden
Markov model. The second step of our prediction model was to take
into account the effect of steric hindrance imposed by competing
nucleosomes. This was achieved by using an HMM, where the hidden
states Hi at the ith genomic position are specified by a 2-D vector (Bi,
Ti), where Bi represents whether the genomic position is bound by a
nucleosome (Bi ¼ N) or not (Bi ¼ L), and Ti ¼ t, if Bi ¼ Bi-1, Bi-2, . . .,
Bi-tþ1, but Bi 6¼ Bi-t. The emission variable Oi is the N-score for the 131
bp sequence centered at the genomic position. We assumed that the
hidden states have the Markov property: P(Hiþ1 j H1, H2, . . ., , Hi) ¼
P(Hiþ1 j Hi), whereas the successive values of the emission variable are
independent from each other. While this model is applicable at a
single base pair resolution, this is computationally costly. For
numerical simplicity, we divided each chromosome into 10 bp wide
bins, and the N-scores within each bin were averaged. The HMM was
formulated in terms of the bins, where i refers to the bin index. Each
nucleosome position corresponds to 15 consecutive bins, whereas a
linker may have variable length corresponding to 1 up to 30 bins. The

maximum linker length allowed in this model is 300 bp. These
constraints can be expressed mathematically as follows.

PðHiþ1 ¼ ðN ; tþ 1ÞjHi ¼ ðN ; tÞÞ ¼ 1; for 1 � t � 14:

PðHiþ1 ¼ ðL; 0ÞjHi ¼ ðN; 15ÞÞ ¼ 1;

PðHiþ1 ¼ ðL; tþ 1ÞjHi ¼ ðL; tÞÞ ¼ pLðT � tþ 1jT � tÞ; for 1 � t � 29:

PðHiþ1 ¼ ðN ; 0ÞjHi ¼ ðL; tÞÞ ¼ 1� pLðT � tþ 1jT � tÞ; for 1 � t � 29:

PðHiþ1 ¼ ðN ; 0ÞjHi ¼ ðL; 30ÞÞ ¼ 1;

and PðHiþ1jHiÞ ¼ 0, for other pairs of ðHi;Hiþ1Þ. In the above, pLð�Þ
represents the probability distribution of linker length, and it was
estimated from experimental data. Finally, the emission distribution
P(Oi j Hi) was assumed Gaussian whose mean and variance were
dependent only on Bi and estimated from the training dataset.

CTCF peaks. For Figure 7, the center positions of the CTCF sites in
Kim et al. [38] were simply the mid-points of the CTCF peaks
download from the Cell website. The center positions of the CTCF
sites in Barski et al. were determined as follows. Counts of sequence
tags over 400 bp windows were first obtained from http://dir.nhlbi.nih.
gov/papers/lmi/epigenomes/hgtcell.html. Windows containing at least
10 tags were kept. Finally, if two windows were within 5 kb of each
other, only the one containing more tags were selected. The purpose
of the last step was to select only one window for a CTCF binding site.

Supporting Information

Figure S1. Comparison of the Average Promoter Nucleosome Score
Patterns

(A,B) Same as Figure 2A except for using different nucleosome scores.
(C,D) Same as Figure 2C except for using different scores.
(A,C) The free energy score as in Segal et al. [7].
(B,D) The NPS score as in Ioshikhes et al. [25].
(E) Same as Figure 2C except that gene expressions are based on polII
occupancy as measured by Dion et al. [30].
z refers to the measured log-ratio.

Found at doi: 10.1371/journal.pcbi.0040013.sg001 (1.4 MB EPS).

Figure S2. Comparison of the Average Nucleosome Score Pattern for
Transcription Factor Binding Sites (Functional), Non-Functional
Motif Sites, and Intergenic Background

The nucleosome scores are the N-score (our model), the free energy
score (Segal), and the NPS score (Ioshikhes), respectively. For each
model, the nucleosome scores are normalized by a multiplicative
factor so that the standard deviation is equal to 1. The error bars
represent the standard errors of the estimated mean nucleosome
score value within each category.

Found at doi: 10.1371/journal.pcbi.0040013.sg002 (905 KB EPS).

Figure S3. False Positive Error Rate for the H2A.Z Nucleosome
Positions Predicted from the N-Score Model

The model was trained by using the H2A.Z nucleosome sequence
information obtained from Albert et al. [8]

Found at doi: 10.1371/journal.pcbi.0040013.sg003 (527 KB EPS).

Figure S4. False Positive Error Rate of the Nucleosome Positions
Predicted by Peckham et al. [26]

Found at doi: 10.1371/journal.pcbi.0040013.sg004 (605 KB EPS).

Table S1. Selected Wavelet Energy Functions and Corresponding
Coefficients from the Stepwise Logistic Regression Model, Using the
199 Nucleosome Squences and 142 Chromosome III Linker Sequen-
ces as the Training Dataset

A jth level coefficient corresponds to variation at the length scale 27�j

bp.

Found at doi: 10.1371/journal.pcbi.0040013.st001 (16 KB XLS).

Table S2. Statistical Significance of Wavelet Energy Coefficients in
Discriminating Nucleosome and Linker Sequences

A jth level coefficient corresponds to variation at the length scale 27�j

bp. The p-value for each wavelet energy coefficient results from a t-
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test comparing the difference between the nucleosome and linker
sequences in the training dataset.

Found at doi: 10.1371/journal.pcbi.0040013.st002 (26 KB XLS).
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